Fertilization Increases Below-ground Carbon Sequestration of Loblolly Pine Plantations

نویسندگان

  • K. H. Johnsen
  • J. R. Butnor
  • C. Maier
  • R. Oren
  • R. Pangle
  • L. Samuelson
  • J. Seiler
  • S. E. McKeand
  • H. L Allen
چکیده

The extent of fertilization of southern pine forests is increasing rapidly; industrial fertilization increased from 16,200 ha per year in 1988, to 344,250 ha in 1998. Fertilization increases stand productivity and can increase carbon (C) sequestration by: 1) increasing above-ground standing C; 2) increasing C stored in forest products; and 3) increasing below-ground C pools. This talk will concentrate on the latter and will present summary data from five experiments spatially ranging from the Virginia Piedmont to the Alabama Coastal Plain, and ranging in age from one to 17 years. Fertilization has increased pine growth in all of these studies. In two other studies, fertilization has significantly decreased C losses from the soil as measured via an automated CO2 efflux system using an infrared gas analyzer. In two more of these studies, soil CO2 efflux did not differ significantly between control and fertilized plots (means under fertilization were lower though), although below-ground biomass was increased. And in the last study, fertilization increased soil CO2 efflux by approximately 18%; however, fertilization increased below-ground biomass by more than 250%. Combined, these studies indicate forest fertilization increases below-ground C sequestration. As forest industry is firmly established in the Southeastern United States, and since soil nutrition is a major limiting factor to tree growth, increasing forest fertilization represents a realistic method to sequester atmospheric C in the shortto long-term.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mid-Rotation Silviculture Timing Influences Nitrogen Mineralization of Loblolly Pine Plantations in the Mid-South USA

Intensively managed loblolly pine (Pinus taeda L.) plantations often develop nutrient deficiencies near mid-rotation. Common silvicultural treatments for improving stand nutrition at this stage include thinning, fertilization, and vegetation control. It is important to better understand the influence of timing fertilization and vegetation control in relation to thinning as part of improving the...

متن کامل

Young Modeling for I lntensi Loblolly Pine Plantations in Southeastern U S

Intensively managed loblolly pine stands are often subjected to a variety of silvicultural treatments at t ime of planting or shortly thereafter. However, most loblolly pine growth-and-yield models predict growth after crown closure has occurred. In this article, we describe the development and implementation of a system of equations designed to simulate growth of loblolly pine before the onset...

متن کامل

Determining the best form factor formula for Loblolly Pine (Pinus taeda L.) plantations at the age of 18, in Guilan- northern Iran

In order to determine the best form factor formula for Loblolly Pine (Pinus taeda L.) plantations in Talesh (Western Guilan province-Iran), a number of 110 trees were selected based on their distribution in diameter classes, from 12 to 34 cm (in a two- cm diameter interval). First, several quantitative factors including diameter at breast height, diameter at 0.65 m of height, and diameter at st...

متن کامل

Estimating Long-Term Carbon Sequestration Patterns in Even- and Uneven-Aged Southern Pine Stands

Carbon (C) sequestration has become an increasingly important consideration for forest management in North America, and has particular potential in pine-dominated forests of the southern United States. Using existing literature on plantations and long-term studies of naturally regenerated loblolly (Pinus taeda) and shortleaf (Pinus echinata) pine-dominated stands on the Crossett Experimental Fo...

متن کامل

Fine-root respiration in a loblolly pine (Pinus taeda L.) forest exposed to elevated CO2 and N fertilization.

Forest ecosystems release large amounts of carbon to the atmosphere from fine-root respiration (R(r)), but the control of this flux and its temperature sensitivity (Q(10)) are poorly understood. We attempted to: (1) identify the factors limiting this flux using additions of glucose and an electron transport uncoupler (carbonyl cyanide m-chlorophenylhydrazone); and (2) improve yearly estimates o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001